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When Problem Solving Followed by Instruction 
Works: Evidence for Productive Failure

Tanmay Sinha  and Manu Kapur
ETH Zürich

When learning a new concept, should students engage in problem solving 
followed by instruction (PS-I) or instruction followed by problem solving 
(I-PS)? Noting that there is a passionate debate about the design of initial 
learning, we report evidence from a meta-analysis of 53 studies with 166 
comparisons that compared PS-I with I-PS design. Our results showed a 
significant, moderate effect in favor of PS-I (Hedge’s g 0.36 [95% confidence 
interval 0.20; 0.51]). The effects were even stronger (Hedge’s g ranging 
between 0.37 and 0.58) when PS-I was implemented with high fidelity to the 
principles of Productive Failure (PF), a subset variant of PS-I design. 
Students’ grade level, intervention time span, and its (quasi-)experimental 
nature contributed to the efficacy of PS-I over I-PS designs. Contrasting 
trends were, however, observed for younger age learners (second to fifth 
graders) and for the learning of domain-general skills, for which effect sizes 
favored I-PS. Overall, an estimation of true effect sizes after accounting for 
publication bias suggested a strong effect size favoring PS-I (Hedge’s g 0.87).

Keywords: productive failure, direct instruction, preparation for future 
learning, learning through problem solving

There is a long-standing debate on whether the teaching of a new concept 
should begin with instruction or problem solving (Tobias & Duffy, 2009). Bringing 
empirical evidence to bear on this debate is vital for advancing the learning theory 
as well as practice (Kalyuga & Singh, 2016; Kapur, 2016). This is precisely the 
aim of our meta-analysis.

Arguments in favor of an instruction-first approach (instruction followed by 
problem solving, or I-PS) are based on decreasing the possibility of student mak-
ing errors, reducing floundering, and increasing attention to critical and relevant 
aspects of the domain material (Kirschner et al., 2006). One key underlying 
assumption is that students are often inadequately equipped to efficiently acquire 
and consolidate deep learning strategies on their own. Lack of prior knowledge 
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can lead to time-consuming search through the solution space when students 
attempt to engage in sensemaking via trial and error, thereby burdening the lim-
ited capacity of the working memory. A key recommendation in direct instruction, 
therefore, is that once targeted domain concepts have been formally introduced 
and worked examples presented to support solution schema construction, only 
then are students prepared to be subjected to (un)-guided problem solving in a 
subsequent phase (Stockard et al., 2018).

Arguments in favor of a problem-solving first approach (problem solving fol-
lowed by instruction, or PS-I) are based on preparing students for future learning 
(Schwartz & Martin, 2004) by giving them opportunities to notice and encode 
critical domain features on their own (Loibl et al., 2017). By confronting students 
with challenging experiences (rather than shrinking the problem-space upfront), 
their agency (efforts at sensemaking) is emphasized, and learning with germane 
cognitive load is facilitated. This is achieved by a study design that incorporates 
an initial exploration phase where students use prior knowledge to develop 
approximate solutions to novel problems, followed by an instruction phase involv-
ing lectures and/or practice (Kapur & Bielaczyc, 2012).

Productive Failure

Productive failure (PF; Kapur, 2008, 2016; Kapur & Bielaczyc, 2012) can be 
conceived as a subset of PS-I designs that fall under the broader design paradigm 
of preparation for future learning (PFL; Schwartz & Bransford, 1998). Whereas 
the problem-solving phase in PF is intentionally designed to result in failure in 
problem solving, not all problem solving in PS-I is designed to have that feature. 
See Figure 1 for an illustration depicting this hierarchy. PF comprises an initial 
generation and exploration phase, affording opportunities for students to activate 
and differentiate prior and intuitive knowledge, to critique and refine representa-
tions and solution methods (RSMs) for solving complex problems. Since these 
problems are based on concepts students have not formally learned yet, such a 
problem-solving process very often leads to failure (in relation to a desired goal). 
In a subsequent consolidation phase, an expert or a teacher builds on student-
generated solutions to teach them the targeted concepts. The underlying rationale 
is to design for failure in the initial learning to minimize failure in the longer term 
(Kapur, 2016). It must be noted that not all PS-I designs are PF, but only those that 
follow the design principles of PF as articulated in Kapur and Bielaczyc (2012). 
We will refer to PF design fidelity as the extent to which these criteria are imple-
mented within a PS-I design.

The past decade has seen a growing body of evidence for the efficacy of PF in 
facilitating conceptual knowledge and transfer (Kapur, 2016; Loibl et al., 2017). 
Evidence comes not only from quasi-experimental studies conducted in the real 
ecologies of classrooms (e.g., Hofer et al., 2018; Kapur, 2012; Loibl & Rummel, 
2014b) but also from controlled experimental studies (e.g., Kapur, 2014; Newman 
& DeCaro, 2019; B. Schneider & Blikstein, 2018). Given the explosion in the 
number of studies that have begun to experimentally investigate the efficacy of 
different learning designs, we believe our current meta-analytic review (with a 
focus on comparative interventions between PS-I and I-PS) is very timely. We 
rigorously examined when, why, and for whom PS-I (and more specifically, PF) 
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works by conducting a systematic meta-analysis of the published literature. Our 
goal was to understand the extent to which PF design fidelity impacts students’ 
learning, and what salient subgroup differences might be responsible for this 
effect.

Previous Reviews

Two recent reviews have addressed potential causes of success (Loibl et al., 
2017) and failure (Sinha & Kapur, 2019) of designs where problem solving as a 
preparatory activity precedes instruction. Both reviews (the former based on 34 
studies spanning 20 articles, and the latter based on 57 studies spanning 44 arti-
cles) have their tradeoffs.

For instance, Loibl et al. (2017) focus on interrelated cognitive mechanisms 
that might explain the positive benefits of approaches implemented based on the 
PS-I design (e.g., Productive Failure [Kapur & Bielaczyc, 2012], Invent with 
Contrasting Cases [Schwartz & Martin, 2004]). These mechanisms include inten-
tional activation of relevant prior knowledge, enhancement of learners’ awareness 
of the problem situation and own knowledge gaps, and focused attention on the 
search for deeper patterns rather than surface characteristics. The strength of the 
Loibl et al. (2017) review lies in that it proposes generalizable cognitive mecha-
nisms that can be systematically tested. However, although Loibl et al. (2017) 
support their theoretical assumptions about the cognitive mechanisms with some 
empirical support from the literature, the majority of the studies surveyed were 

FIGuRE 1. Venn diagram illustrating the hierarchy of PF, PS-I, and PFL learning 
designs. Here, we depict one category of preparation for future learning (PFL) designs 
where sensemaking experiences precede instruction. However, more broadly, PFL can be 
conceived as any experience that prepares students to learn in the future—that learning 
could occur not just through explicit instruction but also through exploration, practice, 
and so on. PF = productive failure; PS-I = problem solving followed by instruction.
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extremely domain-specific (had mathematics as the learning domain), and were 
conducted primarily by a handful of authors. Furthermore, Loibl et al. (2017) do 
not address the question of when and for whom PS-I works. In contrast, the sur-
veyed studies in the current meta-analysis come from a diverse demographic 
range, which affords the opportunity to make more generalizable claims about 
PS-I efficacy.

The more recent Sinha and Kapur (2019) review doubles the surveyed article 
base compared to Loibl et al. (2017) and shifts the focus from why PS-I works to 
when and why it does not work. Several boundary conditions for the efficacy of 
PS-I over alternative learning designs (including, but not limited to, only I-PS) are 
identified. These boundary conditions comprise (a) PF fidelity criteria, (b) incom-
ing characteristics of students (e.g., mastery orientation), (c) nature of the prob-
lem-solving task (e.g., domain specificity), (d) student solutions during the 
problem-solving phase and the extent to which they are scaffolded (e.g., usage of 
relevant induction criteria), and (e) nuances related to the overall learning design 
(e.g., additional practice activities). The strength of the Sinha and Kapur (2019) 
review is that it provides a consolidated discussion on when PF fidelity criteria, 
student, and intervention characteristics negatively affect learning outcomes asso-
ciated. However, there is no attempt to statistically codify and quantify the 
strength of the desired effects, which is the aim of the current meta-analysis.

Finally, there is one quantitative meta-analytic review of PS-I versus I-PS 
comparisons (Darabi et al., 2018). This review comprises a small number of arti-
cles (n = 12) up until 2015 and reports an average effect size of 0.43 [95% confi-
dence interval (CI) 0.19, 0.68] in favor of PS-I. Apart from the small sample size 
and lack of a sufficient number of studies reporting negative effect sizes, there are 
several limitations of this meta-analysis that may have misrepresented the size of 
the actually reported effect size estimates. For instance, the methodology (a) com-
prised a basic two-level random effects model that is problematic because it only 
accounts for participants nested within studies and not the dependency between 
multiple studies in an article (we address this issue in the current review by using 
a three-level meta-analytic model for pooling effect sizes and conducting all fol-
low-up analyses) and (b) averaged effect sizes across different learning outcomes 
(e.g., conceptual knowledge, transfer) within a study. We address this issue in the 
current review by treating these outcomes separately. Furthermore, PS-I was 
equated with PF, which as we will further argue is not accurate.

The Present Review

Compared to previous reviews (Darabi et al., 2018; Loibl et al., 2017; Sinha & 
Kapur, 2019), we significantly expand on the number of studies/experimental 
comparisons (also, potential subgroups we look at). This allows establishing 
clearly the nature and size of effects produced by PS-I interventions. Identifying 
conditions under which such preparatory effects are best fostered is of consider-
able theoretical and practical importance. Theoretically, clarifying this issue has 
important implications for our understanding of the explanatory basis for the effi-
cacy of PS-I. On a practical level, such knowledge is also relevant to debates and 
pedagogic recommendations about methods for improving the efficacy of PS-I 
learning designs that benefit more diverse student populations.
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Research Questions

We address the following research questions:

Research Question 1: What is the differential impact of learning designs that 
flip the sequence of problem solving and instruction (PS-I and I-PS) on out-
comes of (a) procedural knowledge and (b) conceptual knowledge and 
transfer?
Research Question 2: How does the strength of such differential effects vary 
with the fidelity of PS-I to PF design criteria, student, and intervention 
characteristics?

Coding Rationale

PF Fidelity Criteria
Since a key focus of the meta-analysis is to ferret out implementation features 

of PF against I-PS, coding for specific PF fidelity criteria within the included PS-I 
implementations was a critical first step. Drawing on Kapur and Bielaczyc (2012), 
designing for PF should take into account the activity engaged in by participants, 
participant structures used to engage with the problem, and the social surround 
used to frame the problem-solving context. These elements can be further speci-
fied into concrete design criteria spanning the two phases of PF (see Method sec-
tion for details). We briefly motivate the rationale for these criteria here.

The generation of multiple RSMs in the problem-solving phase can be consid-
ered a proxy for prior knowledge activation, a key cognitive mechanism (M. 
Schneider & Stern, 2010) explaining the differential benefit of preparatory learn-
ing activities (Loibl et al., 2017). In the absence of evidence for students maxi-
mally activating their relevant prior knowledge by generating multiple suboptimal 
solutions, we would not expect them to gain more from a follow-up lecture, than 
if they did not participate in any preparatory problem-solving.

Affective draw of the problem is an interrelated fidelity criterion that functions 
to pique students’ situational interest (Hidi & Harackiewicz, 2000). It can be 
instantiated by creating intuitive hooks that engage students in design via con-
trasting cases, authentic storylines, and situating the problem within interactive 
learning environments (Schraw et al., 2001). Empirical results within PF, and 
more generally PS-I, suggest that such an activity design holds high potential to 
positively impact curiosity and affect (e.g., Glogger-Frey et al., 2015; Lamnina & 
Chase, 2019; Loibl & Rummel, 2014a; Sinha et al., 2021; Sinha & Kapur, 2021).

Group work, despite posing additional cognitive costs in coordinating prob-
lem-solving strategies from one’s partner, is rather well-suited for preparatory 
problem solving. This is because it affords students the opportunity to cue each 
other’s prior knowledge, build on the complementary expertise of a group mem-
ber, and use the increased memory and problem-solving resources to detect and 
correct errors when developing multiple RSMs (Nokes-Malach et al., 2015). 
However, inhibiting processes such as fear of evaluation from the partner (e.g., 
when expressing an idea) and social loafing (suboptimal task engagement because 
of the belief a partner will pick up the slack) may also impede the benefits that can 
be gained via group work. The tradeoff between these competing mechanisms has 
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been exemplified in prior PS-I work comparing individual and collaborative PS-I 
(e.g., Mazziotti et al., 2015; Mazziotti et al., 2019; Sears, 2006), and makes a 
strong case to assess the differential impact of group work, when implemented 
within PS-I and compared with a flipped I-PS sequence.

The use of group work as a participation structure should go hand in hand with 
social surround facilitation during the problem-solving phase. By enforcing 
appropriate socio-mathematical norms and focusing on motivational scaffolds to 
keep students engaged in RSM generation, the negative influence of threats to 
students’ status and respect is mitigated (Cobb, 1995; Sherin, 2000; Thomas & 
Brown, 2007). Such threats can arise, for instance, from factors including but not 
limited to task conflict with peers and coping with uncertainty in RSM generation 
(because of lack of verifiable outcomes).

The last two PF fidelity criteria focus on the instruction phase of PS-I. 
Instruction that builds on student-generated solutions is more likely to make 
students aware of specific gaps in their reasoning (Loibl & Rummel, 2014a). By 
explaining why those gaps exist (via comparison and contrast with the canonical 
solution), students’ perception of the relevance of instructional explanations is 
likely to lead to deeper processing and higher gains from such consolidation and 
knowledge assembly. Indeed, theoretical (and empirically tested) accounts of 
problem solving endorse such an explanatory account (Chi, 2000; VanLehn, 
1999). To complement such a form of instruction, social surround facilitation 
during the instruction phase via the use of conversational and social interactive 
skills (such as critiquing, arguing, engaging students in scientific inquiry, etc.) 
may be posited to be more effective than an expository style of using one-way 
instructive presentations (Lazonder & Harmsen, 2016). Within PS-I studies, 
Loibl and Leuders (2018) and Loibl and Leuders (2019), for instance, have found 
that explicitly prompting students to elaborate on their errors during follow-up 
instruction improves students’ conceptual knowledge (more so than an experi-
mental condition with monologue-dominant teacher discourse, where it is up to 
students to connect their activated prior knowledge to the newly presented 
information).

Students’ Incoming Characteristics
Students’ grade level plays an important role in the context of inductive or 

deductive learning activities, especially when considering individual differences 
(e.g., self-regulation skills, mastery orientation) that may be less pronounced at 
lower grade levels. Young learners (e.g., second to fifth graders) may have insuf-
ficient prior knowledge about cognitive and metacognitive learning strategies to 
generate multiple solutions during initial problem solving (Mazziotti et al., 2015). 
The resulting lack of relevant prior knowledge activation may attribute to null or 
negative preparatory benefits. However, other empirical work comparing PS-I 
and I-PS (Belenky & Nokes-Malach, 2012; DeCaro et al., 2015) has suggested 
that regardless of students’ grade level, those with higher incoming mastery orien-
tation might learn equally well with problem-solving-first or instruction-first 
approaches. This is because the inventing activity in and of itself provides the 
motivational impetus to learn the targeted concepts (Belenky & Nokes-Malach, 
2012). These contrasting empirical conjectures regarding the dependency of 
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learning within PS-I on students’ grade level motivates its inclusion as a potential 
moderator of the observed effect sizes.

The inclusion of where (or, with what student demographic) a study was car-
ried out as a potential moderator of effect size is driven by two assumptions: (a) 
first, that certain geographical distributions might be dominated by formal lec-
tures as the main pedagogical approach (more so than others), and (b) second, that 
research groups across these geographies may differ in the diversity of theoretical 
and methodological commitment to PS-I or I-PS learning design. Both these 
assumptions may in turn influence the learning outcomes.

Finally, ascertaining what prior knowledge (formal or intuitive) students bring 
into a learning activity is key to designing appropriate guidance to build upon it 
(Kapur, 2016). Conducting a pretest on topics similar to (or, different from) those 
targeted in the intervention is an often-used approach to assess prior knowledge. 
Furthermore, some empirical work provides support for the idea that a pretest 
covering concepts targeted during the PS-I intervention might already begin to 
engage students in preparatory learning mechanisms (Newman & DeCaro, 2019), 
which, in turn, may dilute the differential advantages of PS-I over I-PS (Kapur, 
2016). On the other hand, empirical research on the “forward testing” effect in 
inductive learning situations suggests that testing of studied information can 
enhance learning and retrieval of new information (see Yang et al., 2018, for an 
overview of underlying cognitive mechanisms). With respect to the PS-I design 
then, facilitatory effects of forward (pre-)testing along with learning mechanisms 
triggered during the initial problem-solving phase might in fact strengthen (rather 
than weaken) differential advantages of PS-I over I-PS. In summary, with prior 
work implicating the presence and nature of pretesting to differentially influence 
problem-solving performance within PS-I (and consequently, learning from 
instruction), we included this variable as a moderator of the observed effect size.

Intervention Characteristics
Intervention type (experimental vs. quasi-experimental) might serve as a criti-

cal confounding factor when interpreting the results of our meta-analysis. In con-
ducting efficacy research to show that PS-I is more effective than variants of 
standard practice (e.g., I-PS), carrying out experimental work necessitates water-
ing down one or both learning designs to make them similar. Although this 
strengthens causal attribution about external conditions of learning and/or learn-
ing theories, there is a risk that experimental studies end up comparing two sub-
optimal models of instruction that have the sole merit of differing on only one 
variable. On the other hand, quasi-experimental research does not limit/constrain 
natural learning affordances in the service of testing whether one design feature is 
more effective than another for a specific model of instruction. It may therefore 
be better poised to compare different instructional paradigms and prove theories 
about internal learning mechanisms. Furthermore, quasi-experimental studies 
carried in real classroom ecologies resemble everyday educational practice, as 
opposed to strictly experimental laboratory studies. Prior empirical work 
(Glogger-Frey et al., 2015; Hsu et al., 2015) has used some exemplar studies to 
generalize the claim about lack of (truly) experimental work in the PS-I literature, 
and hence frequent noncomparability of PS-I and PS intervention conditions. This 
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motivated coding the intervention type to assess the generalizability of this claim 
and understand what potential factors may be driving the observed trend in effect 
size estimates between experimental and quasi-experimental comparisons. In the 
166 comparisons included in the meta-analysis, we, in fact, found a similar num-
ber of experimental comparisons (n = 81) and quasi-experimental comparisons 
(n = 85).

A related confound is the length of exposure students have to the PS-I or I-PS 
intervention. On the one hand, repeated exposures to PS-I for student populations 
(for whom I-PS is the norm) may reduce novelty effects of the learning design and 
result in similar learning outcomes as I-PS over time. Some previous PS-I work 
(Kim et al., 2015), however, implicates that repeated exposures to PS-I via mul-
tiple smaller cycles of problem solving and instruction happening closely together 
(resulting in lengthier interventions overall) may, in fact, be beneficial. Given the 
magnitude/diversity of knowledge assembly students need for understanding dif-
ferent conceptual task elements during the follow-up instruction phase, redundant 
exposure may result in learning outcomes favoring PS-I. As students spend greater 
time becoming familiar with the expectations and demands of preparatory prob-
lem-solving, it is plausible to expect that they would also gain more from the 
follow-up lecture and outperform I-PS counterparts on post hoc assessments. 
These competing conjectures motivate the coding intervention time span of each 
included comparison.

To assess the robustness of the overall effect size estimates across diverse 
domains, the targeted learning concept was included as a potential moderator. 
Finally, based on prior work that implicates (a) the efficacy of PS-I over I-PS to 
be more likely for conceptual knowledge and transfer (Kapur, 2016; Loibl et al., 
2017) and (b) no clear benefits of PS-I for procedural knowledge, that is, similar 
or lower performance relative to I-PS (Chen & Kalyuga, 2020; Loibl et al., 2017), 
learning outcomes that we coded focus on these.

Method

Search Criteria

Since our analysis focuses on establishing empirical evidence for when, why, 
and for whom PF works, our search process and the criteria for including and 
excluding comparisons for this meta-analysis included articles in the Google 
Scholar databases1 that

1. cited either of the two seminal PF articles (Kapur, 2008; Kapur & 
Bielaczyc, 2012) and/or other key follow-up PF articles (Kapur, 2014, 
2015, 2016),2

2. reported experimental or quasi-experimental comparison between PF and 
I-PS, and

3. assessed learning outcomes comprising at least one of conceptual knowl-
edge or transfer and, optionally, also procedural knowledge.

Criterion 1 resulted in 1212 articles as of June 26, 2019, with each of the five 
PF articles contributing 552, 349, 171, 33, and 107 to the pool, respectively. After 
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cross-checking this list with 20 articles reported in PS-I’s recent qualitative review 
(Loibl et al., 2017), 324 duplicate records were removed. Forty-five of the remain-
ing 908 articles met Criteria 2 and 3. These 45 articles reported 53 studies and 
comprised 166 experimental comparisons. References to articles for all compari-
sons can be found in the supplementary materials, available in the online version 
of this article. Table 1 presents a breakdown of their demographic characteristics, 
while Figure 2 depicts a PRISMA flowchart (Moher et al., 2009) summarizing the 
overall process for selecting studies for inclusion in the meta-analysis. The 

TablE 1

Descriptive characteristics of articles included in the review (n = 166 comparisons)

Categories Subcategories # of comparisons (%)

1.  Geographical 
distribution

Europe (Germany, Switzerland, 
Belgium, Netherlands)

43 (25.9%)

North America (uSA, Canada) 72 (43.4%)
Asia (Singapore, Taiwan, India, 

Hong Kong, Saudi Arabia, Japan)
46 (27.7%)

Australia 5 (3%)
2.  Learner grade/

age range
2nd to 5th graders 25 (15.1%)
6th to 10th graders 75 (45.2%)
undergraduates 61 (36.7%)
Others (postgraduates, professionals) 5 (3%)

3.  Targeted 
concepts

Math (equivalence, geometry, 
fractions, variance, linear 
functions, z-scores, statistics 
process control, fair division/
distribution, crypt-arithmetic)

75 (45.2%)

Basic sciencesa (physics, chemistry, 
biology)

47 (28.3%)

Physics (average speed, density, 
collision, electricity, mechanics)

36 (21.7%)

Chemistry (solutions) 3 (1.8%)
Biology (genetics, plant adaptations) 4 (2.4%)
Medicine (dental hygiene/surgery, 

creatinine clearance, radiographs, 
suturing, biostatistics)

32 (19.3%)

Domain general skill (control of 
variables strategy, water jug 
problems, Rubik’s cube)

8 (4.8%)

Others (psychology [visual system], 
environmental science [climate 
change])

4 (2.4%)

aMultiple concepts from all subdomains of basic sciences (physics, chemistry, biology) were covered 
in four experimental comparisons from Fukaya et al. (2019).
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majority of the studies span a diversity of countries in Europe, North America, 
and Asia, and cover math concepts for 6th to 10th graders and undergraduates. 
There is also evidence for PS-I work gradually expanding to populations at the 
postgraduate and professional levels within other STEM domains like physics and 
chemistry, non-STEM domains like psychology, and teaching of domain-general 
skills.

Articles excluded from the meta-analysis broadly fell into the categories of (a) 
experimental studies (not involving at least one of PS-I or I-PS), (b) observational 
studies describing student interaction and/or the process of learning, (c) qualita-
tive reviews and syntheses with references to failure (or, negative experiences 

FIGuRE 2. PRISMA flowchart summarizing the overall process for selecting studies for 
inclusion.
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more generally), (d) learning analytics and/or methodology-focused work, and (e) 
qualitative failure-related discourse in application areas beyond education (e.g., 
music, philosophy, machine design). Please refer to the online supplementary 
materials for exemplar articles from each of these categories.

Meta-Analysis

With these selected articles, our first goal was to get one overall effect size 
estimate (n = 166).3 These effect sizes corresponded to the learning outcome of 
(a) procedural knowledge and (b) conceptual knowledge and/or transfer.4 
Subsequently, these effect sizes were broken down for different relevant sub-
groupings within the comparisons. Higgins and Green (2011) was used as a refer-
ence text to guide all analyses. Implementation was done in R, using Harrer et al. 
(2019) as a technical guide.

Pooling Effect Sizes
A multilevel meta-analysis model was used to pool the effect sizes (Assink & 

Wibbelink, 2016). We explicitly accounted for participants nested within studies, 
and studies nested within the included articles. The use of such a three-level struc-
ture was based on two assumptions. First, studies did not come from the same 
population; therefore, the deviation in effects between individual studies and the 
true intervention effect of all studies (due to sampling error) might result in a 
distribution of true effect sizes (and not just one true effect size). Second, the 
dependency between effect sizes for multiple studies reported within the same 
research article might artificially reduce heterogeneity and thus lead to false-pos-
itive results; therefore, accounting for this dependency was critical for statistical 
independence, a core assumption of meta-analytic pooling.

We used Hedge’s g (bias-corrected standardized mean difference) to assess the 
overall effect along with 95% confidence intervals (CI). The Cochran’s Q metric 
(reflecting variance of the distribution of true effect sizes) was used for quantify-
ing statistical heterogeneity in the collected effect size data. However, since 
Cochran’s Q can be influenced by the number of studies and their precision (sam-
ple size), we also used an additional Higgin’s and Thompson’s I2 heterogeneity 
metric to look at the distribution of variance over the three levels of our meta-
analysis model. Such statistical heterogeneity is important to monitor in the col-
lected effect size data since higher values might dilute the confidence we have in 
our pooled effect.

Subgroup Analysis
To further unpack between-study heterogeneity (that could potentially make 

effect size estimate less precise) in our three-level meta-analytic model, we looked 
at a range of subgroup categories that might explain why the included studies 
showed varying results. Essentially, these categories split the data into different 
subgroups (e.g., fidelity to PF, nature of pretesting, intervention type, etc.). We 
subsequently analyzed if these subgroups within the studies of our meta-analysis 
differed in terms of their effects. Subgroups, along with the definition/criteria we 
used for their coding, are listed below.
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1. PF fidelity criteria within the PS-I design (κ = 0.92, 1.0, 0.87, 1.0, 1.0, 
0.73, and 0.91). Based on the design principles of PF (Kapur, 2012, 2016) 
and the nature of information found in the reviewed articles, we were able 
to code for the following seven criteria:
a. Problems affording multiple RSMs: yes (92.77% comparisons), no
b. Qualitative or quantitative evidence for multiple RSM generation in 

the article (e.g., if authors tabulated quantity/quality of solutions stu-
dents generated)5: yes (59.64% comparisons), no

c. Affective draw of the problem considered (e.g., if the problem design 
comprised story problems within/outside virtual environments, con-
trasting cases, simulations, agent-based modeling, etc.): yes (61.45% 
comparisons), no

d. Group work as the participation structure during the problem-solving 
phase: yes (53.01% comparisons), no

e. Instruction building on student solutions: yes (44.58% comparisons), 
no

f. Social surround facilitation during problem-solving phase6: high (if 
the intervention explicitly mentioned (considered) more than one 
of the following subcriteria: (a) the problem-solving phase as a safe 
space to explore and generate ideas, (b) the social and mathemati-
cal norms around the activity (e.g., it is okay not to be able to solve 
problems as long you try various ways of solving them; highlighting 
to students that there are multiple solution approaches for the problem 
solving; setting the expectation that understanding why and under 
what conditions some solutions are better than others is important); 
(c) provision of affective/motivational support to persist/keep trying 
(excluding prompts for cognitive or metacognitive support), and/or if 
teacher training was held on the PF instructional design prior to the 
intervention), low (only one of these criteria were considered).

g. Social surround facilitation during instruction phase: dialogue-dom-
inant (33.73% comparisons, the teacher asked clarifying questions 
and/or paraphrased student solutions and/or asked students to elabo-
rate upon each other’s ideas and/or engaged students in arguments/
conflict and/or used other kinds of facilitation strategies that enhance 
student engagement), monologue-dominant (one-way transmission of 
information about the concept, expert solutions and/or common stu-
dent solutions).

2. Students’ demographic and/or incoming characteristics (κ = 1.0, 1.0, and 
0.84)
a. Age range (as assessed by their grade level): 2nd to 5th graders, 6th 

to 10th graders, undergraduates, others (postgraduates, profession-
als)

b. Geographical distribution: Europe, North America, Asia, Australia
c. Nature of pretesting7: none (no pretest administered), prerequisite 

(pretest was administered on prerequisite concepts but not those tar-
geted in the intervention), targeted (pretest was administered on con-
cepts similar to those targeted in the intervention)
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3. Intervention characteristics (κ = 1.0, 1.0, 1.0, 1.0)
a. Type: experimental (random assignment to treatment or control 

groups; groups differ only in terms of the experimental treatment they 
receive, that is, a flipped sequence of problem solving and instruc-
tion), quasi-experimental (classroom studies where random assign-
ment is not possible and whole classes are assigned to the treatment 
or control groups; treatment and control groups differ in more than 
just the experimental treatment they receive, e.g., different teachers, 
presence of prompts or accuracy feedback during problem solving, 
different presentation modality during instruction)

b. Time span: a few hours (within 1 day), a few days (>1 day). The 
intervention length comprises the actual experiment (problem solv-
ing and instruction phases), along with any administered pretests and 
posttests.

c. Learning concepts targeted: Math, Basic sciences (physics, chemistry, 
biology), Medicine, Domain-general skill (e.g., control of variable 
strategy), Others (psychology, environmental science)

d. Learning outcomes assessed: conceptual knowledge, transfer, clubbed 
outcomes (single posttest assessing conceptual knowledge and trans-
fer), procedural knowledge

For PF design fidelity criteria, the primary authors discussed the application of 
the criteria to 20% example articles and agreed on the coding criteria, after which 
the first author (with the help of a research assistant) coded the remaining com-
parisons. Inter-rater reliability was κ > 0.7. Disagreements were resolved with 
discussion. The coding scheme for other relatively more subjective categories 
such as social surround facilitation was iteratively developed. Interrater reliability 
κ > 0.7 was established, after which one rater coded the rest of the data. As 
before, disagreements were resolved with discussion. Table 2 showcases some 
examples of comparisons with varying PF design fidelity (Loehr et al., 2014; 
Loibl & Rummel, 2014a; Song, 2018), along with the coded subgroup category 
for those comparisons. Overall, in terms of the extent to which PF is representa-
tive of approaches to PS-I instruction, the least represented PF fidelity criteria are 
social surround facilitation (within the problem solving and instruction phases), 
instruction building on student solutions, and the use of group work as the partici-
pation structure. All coded comparisons with subgroup categories and implemen-
tation-level details for PS-I and I-PS can be found in the online supplementary 
materials.

Note that the n = 81 experimental comparisons (by definition) compare PS-I 
with I-PS, where the PS and I phases are the same regardless of the sequence 
(PS-I or I-PS) in which they were carried out. Consequently, high (or, low) fidel-
ity PS-I implementations are automatically compared with high (or, low) fidelity 
I-PS implementations. For the I-PS condition in the remaining n = 85 quasi-
experimental comparisons, (a) 14.11% comparisons implemented the I phase 
using compare and contrast style of discussion, (b) 15.29% comparisons involved 
variants of scaffolding, sensemaking prompts, or additional learning resources 
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(e.g., in the form of worked examples) in the PS phase, and (c) 64.7% compari-
sons implemented group work as the participation structure in the PS phase. Note 
that despite the included comparisons using similar learning materials for the PS-I 
and I-PS conditions, we could not code for evidence for multiple RSM generation 
and affective draw in the PS phase of the I-PS implementations. This is because 
in the majority of the cases (e.g., Kapur & Bielaczyc, 2012; Loibl & Rummel, 
2014a; Mazziotti et al., 2015; Schwartz & Martin, 2004), the PS phase following 
instruction was practice-oriented (rather than being generative in nature). In com-
parisons where students in the I-PS condition were provided the same invention 
problem as PS-I post-instruction (e.g., Chase & Klahr, 2017; Jarosz et al., 2017; 

TablE 2

Examples of PS-I designs with varying design fidelity to PF

Study characteristics
Loehr et al. (2014) 

(Study 1)
Loibl and Rummel 
(2014a) (Study 1) Song (2018)

Problems affording 
multiple RSMs

Yes Yes Yes

Evidence for multiple 
RSM generation

No No Yes

Affective draw of the 
problem

No Yes Yes

Group work as the 
participation 
structure

No Yes Yes

Instruction building on 
student solutions

No Yes Yes

Social surround 
facilitation (problem-
solving phase)

— Low High

Social surround 
facilitation 
(Instruction phase)

Monologue-
dominant

Dialogue-dominant Dialogue-dominant

Overall PF fidelity 
score (computed as a 
percentage)

16.66% 71.42% 100%

Hedge’s g (effect size) −0.97 1.31 0.73
95% Confidence 

interval
[−2.1, 0.16] [0.22, 2.4] [−0.31, 1.78]

Grade level 2nd to 5th graders 6th to 10th graders 6th to 10th graders
Geographical 

distribution
North America Europe Asia

Nature of pretesting Targeted Prerequisite Targeted
Intervention type Experimental Quasi-experimental Quasi-experimental
Intervention time span A few hours A few hours A few days
Learning concept Math Math Biology
Learning outcome Conceptual 

knowledge
Conceptual 

knowledge
Clubbed outcomes

Note. PS-I = problem solving followed by instruction; PF = productive failure.
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Kapur, 2012), they just used the taught canonical formulation to compute the cor-
rect answer right away. The fact that instruction limits spontaneous exploration 
and discovery is not unsurprising (Bonawitz et al., 2011). Additionally, several 
articles involving quasi-experimental comparisons (e.g., Fukaya et al., 2018; 
Hofer et al., 2018) stated that the I phase of I-PS was designed to provide oppor-
tunities for reflection and/or group discussion, that is, students were asked to 
engage with the presented worked examples, ask questions, and so on. However, 
none of these articles provided evidence that this was indeed the case, and there-
fore it is hard to speculate whether the I-PS conditions indeed used dialogue-
dominant discourse style to facilitate the I phase.

Regression Analysis
To assess the combined effect of different PF fidelity criteria on the standard-

ized effect sizes within our three-level meta-analytic model, we

1. used a binary coding scheme, to give each criterion 1 point if it was pres-
ent in the PF (or PS-I) implementation within a comparison (high/
low surround facilitation during problem-solving was coded as 1/0; 
dialogue-dominant/monologue-dominant social surround facilitation dur-
ing instruction was coded as 1/0).

2. Summed up these points to compute a synthesized PF fidelity score (min 
0, max 7 points).

3. Divided the synthesized PF fidelity score by the total number of points 
achievable to compute a percentage score (remember that not all studies 
provided information about social surround facilitation during the prob-
lem-solving phase). This aggregated descriptive statistic for the raw data 
(n = 166 comparisons) highlighted the differential extent to which PS-I 
approaches incorporate elements of PF, and was distributed as follows: 
0% to 25% (n = 22), 25% to 50% (n = 60), 50% to 75% (n = 36), 75% 
to 100% (n = 48).

4. Ran a meta-regression to estimate the predictive influence of this percent-
age score on the observed effect sizes. This gave us an account of if/
whether and how much of variance might PF fidelity explain in the 
observed effect size estimates.

To unpack the relative importance of each of the seven PF fidelity criteria for 
prediction of effect size estimates, we further built a multiple-regression model. 
The seven binary-coded PF fidelity criteria served as independent variables,8 and 
the standardized effect size was used as the dependent variable. Empirically, we 
used two approaches to select and insert predictors (here, the seven PF fidelity 
criteria) into this model. First, a stepwise model-building approach implemented 
using WEKA, a popular open-source machine learning toolkit (Witten et al., 
2016) was used. Here, we successively inserted (forward selection) or deleted 
(backward selection) predictors in/from the multiple-regression model based on 
the amount of variability explained. Multicollinear predictors were removed in 
the final model creation. The predictors (PF fidelity criteria) were rank-
ordered using Pearson’s correlation between them and the dependent variable 
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(standardized effect size). In selecting the best predictor subset, the individual 
predictive ability of each predictor along with the degree of redundancy between 
them was considered, with a preference for subsets of predictors that were highly 
correlated with the dependent variable and had low intercorrelation. This evalua-
tion produced a numeric measure (merit) of the expected performance of a 
subset.9

Second, a multimodel inference model-building approach implemented using 
R (Harrer et al., 2019), and frequently used in the meta-analysis literature was 
used. Here, we simultaneously assessed the evidential support for different multi-
ple-regression models involving all possible combinations of predictors. Model 
fit was evaluated using corrected Akaike’s Information Criterion (AICc; a statisti-
cal criterion that rewards simpler, more parsimonious models to avoid overfit-
ting). We then synthesized estimated coefficients of predictors across all possible 
models to infer the importance of each PF fidelity criteria.10

Publication Bias
As part of the meta-analysis, we also investigated publication bias in the 

selected articles based on two different theoretical assumptions. First, we visual-
ized whether small studies with small effect sizes were missing through funnel 
plots. The underlying assumption was that small studies are at greatest risk for 
being nonsignificant (and thus being missing), while large studies are likely to get 
published irrespective of the significance of results (e.g., due to large commitment 
of resources involved). Only small studies with a very large effect size become 
significant and are likely to be published. Thus, in the presence of publication 
bias, the funnel should look asymmetrical because only small studies with a large 
effect size would be published, while small studies without a significant, large 
effect would be missing. Additionally, we also used inferential statistics (Egger’s 
test) for evaluating presence of asymmetry in the funnel plot and trim-and-fill 
procedures (Duval & Tweedie, 2000) if applicable.

Second, we explored an alternative way to assess the possibility of publication 
bias in our data. We visualized p-curves (distribution of significant p-values) for 
all included comparisons to examine whether our data reported more significant p 
values that were low (p < .01) rather than high (.04 < p < .05). True effects, 
those that differ from zero (e.g., more .01s than .04s), lead to right-skewed 
p-curves, and nonexistent effects lead to flat p-curves (as many .01s as .04s) or an 
equal probability of different significance levels (Simonsohn et al., 2015). We 
conducted follow-up statistical tests to assess whether the p-curve was signifi-
cantly right-skewed (indicative of a true effect behind the data) and whether it was 
flat (indicative of insufficient power, or there being no true effect behind the data). 
Based on a significant right-skewness test and a nonsignificant flatness test, the 
presence or absence of evidential value in the p-curve can be ascertained (see 
Simonsohn et al., 2015, for details).11

Results

Pooled Effect Size Estimates

Results for Research Question 1 suggested that overall, the SMD or effect 
size for conceptual knowledge and transfer was moderate (Hedge’s g = 0.36, 



777

p < .0001, 95% CI [0.20, 0.51]), and in favor of PS-I.12 The heterogeneity 
between comparisons was moderate (Q[df = 165] = 295.91, p < .0001). A total 
of 57.99%, 38.51%, and 3.50% of the variance were explained by the three levels 
of our meta-analytic model (total I2 = 42.01%). This three-level model (AICc 
349.80, p < .0001) captured the variability in our data significantly better than a 
two-level model (AICc 370.83) that did not account for the nesting of studies 
within the articles. For the n = 51/166 comparisons assessing procedural knowl-
edge, results suggested the pooled effect size for procedural knowledge to be 
Hedge’s g = −0.03, p = .7384, 95% CI [−0.20, 0.15]. See the online supplemen-
tary materials (Table S1) for the forest plot, the standardized mean difference 
(SMD) for each comparison, 95% confidence intervals (lower CI, upper CI), and 
the contribution of each comparison in the pooled effect size calculation (%).

Subgroup Analysis

Subgroups accounting for heterogeneity in the overall effect size are shown in 
Tables 3, 4, and 5. Results for Research Question 2 suggested several significant 
subgroup differences as elaborated below.

Productive Failure Fidelity for the PS-I Design
Descriptively, comparisons had a higher effect size (in favor of PS-I), if any of 

the seven PF fidelity criteria were followed in the PS-I design. Only four of these 

TablE 3

Subgroup analysis focusing on PF fidelity

PF fidelity criteria Hedge’s g [95% CI]

Problems affording multiple 
RSMs [n.s.]a

Yes (0.37 [−0.41, 1.38])
No (−0.11 [−0.99, 0.77])

Evidence for multiple RSM 
generation [+]

Yes (0.47 [0.00, 0.61])
No (0.16 [−0.08, 0.40])

Affective draw of the problem 
[n.s.]

Yes (0.44 [−0.08, 0.58])
No (0.19 [−0.08, 0.46])

Group work as the participation 
structure [*]

Yes (0.49 [0.01, 0.58])
No (0.19 [−0.02, 0.40])

Instruction building on student 
solutions [*]

Yes (0.56 [0.07, 0.64])
No (0.20 [0.01, 0.40])

Social surround facilitation [n.s.] 
(problem-solving phase)

High (0.58 [−0.30, 0.74])
Low (0.36 [0.02, 0.71])

Social surround facilitation [+] 
(instruction phase)

Dialogue-dominant (0.55 [0.00, 0.63])
Monologue-dominant (0.24 [0.05, 0.43])

Note. PF = productive failure; CI = confidence interval; RSM = representation and solution 
method; PS-I = problem solving followed by instruction; I-PS = instruction followed by problem 
solving. Positive effect sizes depict results in favor of PS-I (treated as the experimental condition). 
Negative effect sizes depict results in favor of I-PS (treated as the control/comparison condition).
aSignificant subgroup differences are marked (p < .1: +, p < .05: *, p < .01: **, p < .001:  
***, n.s.: not significant).
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seven subgroup differences were significant (or marginally significant)—
evidence for multiple RSM generation (p = .05), group work participation struc-
ture (p = .04), instruction building on student solutions (p = .02), and social 
surround facilitation during the instruction phase (p = .05). The overall PF fidel-
ity score (computed as a percentage) was a significant predictor of the effect size 
(β = 0.0065, p < .001, 95% CI [0.0044, 0.0087]).

We found that longer interventions had a higher overall PF fidelity score. A 
Welch two-sample t test (t[154.22] = 8.504, p < .001) revealed significant differ-
ences in overall PF fidelity score, with the mean of interventions spanning a 
few days being 74.45 (SD = 22.64) and those spanning a few hours being 42.01 
(SD = 26.13). Significant chi-square tests for individual PF fidelity criteria also 
suggested that longer interventions were more likely to comprise these criteria. 
These observations led us to explore the potential confound of the length of the 
intervention (instead of the PF fidelity) being responsible for explaining the 
observed effects. Different meta-regression models were run to explicitly incor-
porate the interaction of intervention time span with (a) the overall PF fidelity 
score and (b) the presence of each of the seven individual PF fidelity criteria. In 
summary, we found that

1. Despite an overall increase in effect size with increase in overall PF fidel-
ity (β = 0.0173, p = .0005, 95% CI [0.0077, 0.0269]), there was in fact a 
decrease for interventions spanning a few hours (β = −0.0116, p = .0546, 
95% CI [−0.0235, 0.0002]). This suggests that cramming too many design 
features within a short amount of time may not be optimal.

TablE 4

Subgroup analysis focusing on students’ incoming characteristics

Incoming student profile Hedge’s g [95% CI]

Age range (grade level)  
[**, +, n.s., *]a (Others: 
postgraduates and professionals)

2nd to 5th graders (−0.09 [−0.92, −0.16])
6th to 10th graders (0.50 [−0.04, 0.58])

undergraduates (0.28 [−0.46, 0.24])
Others (1.03 [0.05, 1.39])

Geographical  
distribution [n.s., n.s., *, n.s.]

Europe (0.19 [−0.59, 0.15])
North America (0.24 [−0.54, 0.09])

Asia (0.64 [0.03, 0.73])
Australia (0.95 [−0.13, 1.39])

Nature of  
pretesting [n.s., n.s., n.s.]

None (0.31 [−0.44, 0.30])
Prerequisite (0.30 [−0.63, 0.50])

Targeted (0.39 [−0.26, 0.42])

Note. PF = productive failure; CI = confidence interval; PS-I = problem solving followed by 
instruction; I-PS = instruction followed by problem solving. Positive effect sizes depict results in 
favor of PS-I (treated as the experimental condition). Negative effect sizes depict results in favor of 
I-PS (treated as the control/comparison condition).
aSignificant subgroup differences are marked (p < .1: +, p < .05: *, p < .01: **, p < .001: ***, 
n.s.: not significant). For categories with >2 subgroups, significance refers to comparison of a 
particular subcategory with the rest of the subcategories.
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2. Despite an overall increase in effect size for interventions comprising the 
affective draw PF fidelity criteria (relative to interventions where the 
affective draw of the problem was not considered—β = 0.3710, p = 
.0056, 95% CI [0.1101, 0.6319]), the increase was stronger for interven-
tions spanning a few hours (β = 0.7322, p = .0732, 95% CI [−0.0695, 
1.5339]). This suggests that for shorter interventions, affective draw of the 
problem may be critical.

3. Despite an overall increase in effect size for interventions comprising the 
group work PF fidelity criteria (relative to interventions where individual 
work was used as the participation structure—β = 0.6286, p < .0001, 
95% CI [0.3628, 0.8945]), the increase was stronger when group work 
was not implemented in interventions spanning a few hours (β = 0.7395, 
p = .0023, 95% CI [0.1067, 1.3723]). This suggests that for shorter inter-
ventions, designing the problem-solving phase to accommodate individ-
ual work yields a better predictive estimate of the observed effect sizes.

4. Interaction effects of intervention time span with the remaining five PF 
fidelity criteria were not significant, lending weak overall support to the 
conjecture that intervention length (and not PF fidelity) might be respon-
sible for the observed overall effects.

TablE 5

Subgroup analysis focusing on intervention characteristics

Intervention Hedge’s g [95% CI]

Type [n.s.]a Quasi-experimental (0.46 [−0.10, 0.50])
Experimental (0.25 [0.04, 0.47])

Time span [n.s.] A few days (0.41 [−0.22, 0.42])
A few hours (0.32 [0.11, 0.52])

Learning concepts targeted 
[n.s., n.s., n.s., n.s., n.s., 
n.s., n.s., *]

Math (0.48 [−0.10, 0.52])
Physics (0.39 [−0.34, 0.43])

Chemistry (0.48 [−0.71, 0.96])
Biology (0.32 [−0.73, 0.66])

Medicine (0.24 [−0.60, 0.33])
Psychology (1.38 [−0.43, 2.49])

Environmental science (0.56 [−0.80, 1.20])
Domain-general skills (−0.17 [−1.11, −0.02])

Learning outcomes assessed 
[n.s., n.s., n.s.]

Conceptual (0.33 [−0.30, 0.22])
Transfer (0.40 [−0.19, 0.32])
Clubbed (0.31 [−0.43, 0.31])

Note. PF = productive failure; CI = confidence interval; PS-I = problem solving followed by 
instruction; I-PS = instruction followed by problem solving. Positive effect sizes depict results in 
favor of PS-I (treated as the experimental condition). Negative effect sizes depict results in favor of 
I-PS (treated as the control/comparison condition).
aSignificant subgroup differences are marked (p < .1: +, p < .05: *, p < .01: **, p < .001: ***, 
n.s.: not significant). For categories with >2 subgroups, significance refers to comparison of a 
particular subcategory with the rest of the subcategories.
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Students’ Incoming Characteristics
Age range, as assessed by students’ grade level, had (marginally) significant 

subgroup differences for all student subcategories (except for undergraduates). 
The pooled effect size estimate for younger students (2nd to 5th graders) was 
negative, and these estimates increased (or became more positive) with the age 
range. Furthermore, pretesting focused on learning concepts targeted during the 
intervention was descriptively associated with higher effect sizes (in favor of 
PS-I) relative to pretesting focusing on prerequisite concepts and cases of no pre-
testing. These subgroup differences were however not significant. This result, 
which reflects a facilitatory (rather than inhibitory) effect of targeted pretesting, 
lends support to the forward testing effect conjecture (outlined earlier in the 
coding rationale subsection). To explore the confound of age and the nature of 
pretesting,13 we ran a meta-regression model by explicitly including their inter-
action as a predictor of the observed effect sizes. The interaction term was not 
significant (ps .15 to .77) in the model.

Another observation was the significant difference in the PF fidelity score that 
existed between 6th–10th graders and undergraduates (assessed using an ANOVA 
[F(3, 162) = 6.485, p = .0004] and follow-up Tukey HSD [p = .0002] pairwise 
comparisons). To explore whether the increasing trend of effect sizes in favor of 
PS-I across students’ grade levels could therefore be explained by differential PF 
fidelity across these PS-I implementations, we ran another meta-regression model 
by explicitly including the interaction of grade level and overall PF fidelity score 
as a predictor of the observed effect sizes. The interaction term was (marginally) 
significant for two student subgroups—higher PF fidelity was associated with 
higher effect sizes in the case of 6th to 10th graders (β = 0.0190, p < .0001, 95% 
CI [0.0106, 0.0274]) and undergraduates (β = 0.0080, p = .0934, 95% CI 
[−0.0014, 0.0173]).

Finally, when looking at the distribution of effect sizes by geographical 
regions, interventions carried out in Australia and Asia had descriptively higher 
effect sizes than those conducted in Europe and North America. The only signifi-
cant subgroup difference we found was for Asia (see Table 4), relative to the 
remaining continents.

Intervention Characteristics
When looking at intervention characteristics, effect sizes were descriptively 

higher (and in favor of PS-I) for (a) quasi-experimental comparisons relative to 
experimental comparisons and (b) interventions spanning a few days relative to 
those that spanned a few hours. These subgroup differences, were, however, not 
significant. We investigated two reasons why experimental comparisons might 
have relatively lower effect sizes.

1. Our first hypothesis was that lower manipulation flexibility in experimen-
tal studies might result in them having low overall PF fidelity, which could 
contribute to lower effect size. Indeed, a Welch two-sample t-test (t[163.19] 
= −14.83, p < .001) revealed significant differences in overall PF fidelity 
score (computed as a percentage), with the mean of experimental com-
parisons being 32.36 (SD = 19.50) and those of quasi-experimental 



Productive Failure in Preparatory Problem Solving

781

comparisons being 76.78 (SD = 19.07). However, explicitly incorporating 
the interaction of intervention type with PF fidelity score into a meta-
regression did not reveal a significant interaction effect (p = 0.79).

2. Our second hypothesis was that experimental comparisons might be con-
strained by time, and a shorter duration (consequently, lesser time on task 
for students) might be responsible for relatively lower effect sizes. This 
possibility was empirically tested by conducting a χ2  test for the presence 
of a relationship between intervention type and intervention time span, 
which turned out to be significant ( χ2 1( )  = 33.15, p < .001). Follow-up 
pairwise nominal independence tests revealed that there were significantly 
more experimental comparisons that spanned a few hours, and signifi-
cantly more quasi-experimental comparisons that spanned a few days. 
When explicitly modeling the interaction of intervention type and inter-
vention time span via a meta-regression, we found that the predictive esti-
mate for quasi-experimental comparisons spanning a few hours was in 
fact negative (β = −0.5530, p = .0838, 95% CI [−1.1807, 0.0748]). This 
suggests that the extent to which a quasi-experimental intervention reports 
high effect sizes favoring PS-I might be influenced by the length of the 
intervention.

With respect to learning concepts targeted in the interventions, moderate effect 
sizes in favor of PS-I were observed for domain-specific subjects (e.g., math, 
basic sciences, medicine). For learning domain-general skills, however, the effect 
size was low, and in favor of I-PS. Finally, separation of effects by learning out-
comes suggested moderate effects for transfer (Hedge’s g = 0.40, 95% CI [−0.19, 
0.32]), and low to moderate effects for conceptual knowledge (Hedge’s g = 0.33, 
95% CI [−0.30, 0.22]) and clubbed assessments (Hedge’s g = 0.31, 95% CI 
[−0.43, 0.31]). There were, however, no significant subgroup differences.

Ranking of Productive Failure Fidelity Criteria

Table 6 outlines result from multiple-regression analysis based on the two 
model building methods that we used to rank the seven PF fidelity criteria in 
terms of their importance to predicting effect size estimates. Our first model 
building approach (stepwise regression) revealed instruction building on student 
solutions, group work as the participation structure in the problem-solving phase, 
evidence for multiple RSM generation in the article, and dialogue-dominant 
social surround facilitation in the instruction phase as the top four most important 
predictors. Remember that for stepwise model-building methods, predictor rank-
ing (importance) was based on Pearson’s correlation between the predictor and 
the dependent variable. Furthermore, the latter three predictors (β = 0.28, β = 
0.27, and β = 0.20, respectively) were also selected into the regression model via 
both forward and backward selection approaches. The merit of this subset of pre-
dictors was 0.358 (model R2 = 13.51%).

Our second model-building approach (multimodel inference) revealed evi-
dence for multiple RSM generation in the article, group work, social surround 
facilitation in the instruction phase, and affective draw of the problem as the top 
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four most important predictors. Remember that for multimodel inference, predic-
tor ranking (importance) was based on the sum of Akaike weights for each predic-
tor in the subset of regression models it appeared. Taken together, these rankings 
align with those from the stepwise model-building method.

Publication Bias

Small-Study Bias
The funnel plot visualization to detect if small studies with small effect sizes 

were missing is shown in the left half of Figure 3. The absence of asymmetry is 
visually evident. Egger’s test of asymmetry was not significant (intercept = 0.63, 
p = .219). Since this source of publication bias could be therefore ruled out, no 
studies were imputed in trim and fill analysis.

P-Curve Analysis
The p-curve analysis as shown in the right half of Figure 3, however, revealed 

interesting results. Visually, the p-curve looked skewed to the right. The esti-
mated power of the comparisons included in the analysis, which is useful both in 
designing future studies and in interpreting existing results (Gelman & Carlin, 

TablE 6

Multiple-regression analysis to examine the relative importance of PF fidelity criteria

PF fidelity criteria

Stepwise  
model-building method

Multimodel  
inference  

model-building method

Predictor  
importance 
(Pearson  

correlation)

Predictor  
estimate  

(regression  
coefficient)

Predictor  
importance 

(Akaike  
weights)

Predictor 
estimate 

(regression 
coefficient)

Problems affording multiple 
RSMs (1 = yes, 0 = no)

0.17 0.12 0.38 0.03

Evidence for multiple RSM 
generation (1 = yes, 0 = no)

0.25 0.27 0.93 0.27

Affective draw of the problem  
(1 = yes, 0 = no)

0.18 — 0.56 0.09

Group work as the participation 
structure (1 = yes, 0 = no)

0.29 0.28 0.85 0.24

Instruction building on student 
solutions (1 = yes, 0 = no)

0.28 — 0.40 0.01

Social surround facilitation in PS 
phase (1 = high, 0 = low)

0.09 0.14 0.43 0.03

Social surround facilitation in  
I phase (1 = dialogue,  
0 = monologue-dominant)

0.23 0.20 0.60 0.11

Note. RSM = representations and solution method; PS = problem solving.
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2014), was high (94%, CI [91%, 97%]). Numerically, the test for right-skewness 
was significant (meaning the p-curve was heavily right-skewed), and the test for 
flatness was not significant. Based on the results of the right-skewness and the 
flatness test, we could conclude that evidential value was present in the p-curve. 
The estimate of true effect size (in absence of publication bias) was therefore 
computed to be Hedge’s g = 0.87. With a moderate (<50%) level of heterogene-
ity in included comparisons (I2 = 42.01%), we expect these estimates to be 
robust (van Aert et al., 2016).

Discussion

Overall, our results showed a significant effect (Hedge’s g) of 0.36 [95% CI 
0.20, 0.51] in favor of PS-I (compared to I-PS) for conceptual knowledge and 
transfer, and a nonsignificant effect (Hedge’s g) of −0.03, 95% CI [−0.20, 0.15] 
for procedural knowledge. For procedural knowledge, the results align with prior 
discussions in the PS-I literature (Chen & Kalyuga, 2020; Loibl et al., 2017) sug-
gesting that despite not being better than I-PS, PS-I to say the least, does not hurt 
or compromise on students’ knowledge of procedures. It should be plausible to 
expect fluency in procedures over time with sufficient number of practice oppor-
tunities, something that is hard to capture within the relatively short time span of 
educational interventions. For conceptual knowledge and transfer, although the 
magnitude of the overall effect size might be moderate when based on Cohen’s 

FIGuRE 3. Funnel plot (left) and p-curve (right) to assess publication bias for n = 166 
PS-I and I-PS comparisons are depicted. Funnel plots are colored by the significance 
level into which the effect size of each of the comparisons fall. Bubbles in the plot depict 
included comparisons. The Y-axis shows the standard error (SE) of each comparison, 
with larger comparisons (which thus have a smaller SE) plotted on top of the Y-axis. 
The X-axis shows the standardized effect size of each comparison. Striped vertical line 
corresponds to the pooled effect size estimate. Color coding—dark blue (dark gray):  
p < .05, blue (gray): p < .025, light blue (light gray): p < .01. The p-curve is shown on 
the right with a blue/solid line. The Y-axis shows the percentage of comparisons. The 
X-axis shows the p-values.
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benchmarks (0.2 small, 0.5 medium, 0.8 large), the practical importance of these 
estimates should be judged by the nature of the intervention being evaluated, its 
target population, and the outcome measure or measures being used (Hill et al., 
2008). Kraft (2019), based on the distribution of 1942 effect sizes from 747 ran-
domized control trials evaluating educational interventions with standardized test 
outcomes, has proposed a more plausible benchmark for interpreting effect sizes: 
<0.05 (small), 0.05 to 0.20 (medium), >0.20 (large). In that light, the impact of 
PS-I interventions evaluated via our meta-analysis can be considered rather large, 
relative to I-PS counterparts. We further found several significant subgroup dif-
ferences that might explain efficacy of PS-I over I-PS. On accounting for evi-
dence regarding publication bias in the included comparisons, estimation of true 
effect sizes for conceptual knowledge and/or transfer suggested a strong effect 
size (Hedge’s g) in favor of PS-I (0.87). What might explain these patterns of 
results?

Productive Failure Fidelity for the PS-I Design

When compared to I-PS, convergent results from the subgroup and regression 
analysis suggested a strong trend of high PF design fidelity to be associated with 
higher effect sizes in favor of PS-I. According to Kapur and Bielaczyc (2012), PF 
embodies four core mechanisms (a) activation and differentiation of prior knowl-
edge in relation to the targeted concepts, (b) attention to critical conceptual fea-
tures, (c) explanation and elaboration of these features, and (d) organization and 
assembly of critical conceptual features into targeted concepts.

Mechanisms a and b are likely to be triggered by creating rich problems that 
engage students in design and use variant-invariant features to create opportuni-
ties for failure. By admitting multiple representations and solutions and offering 
intuitive hooks with an affective draw, such problems are well-poised to activate 
students’ relevant prior knowledge and focus their attention on conceptual fea-
tures of the problem. We operationalized these design features from Kapur and 
Bielaczyc (2012) into three concrete criteria: problems affording multiple RSMs, 
evidence for multiple RSM generation, and affective draw of the problem.

Mechanisms b and c are likely to be triggered by providing opportunities for 
explanation and elaboration via collaboration in mixed ability groups, support for 
students to collaborate through macro scripts, and pushing student thinking 
through disciplinary facilitation. Along with the appropriate participation struc-
ture, the social surround plays a key role during the initial problem-solving activ-
ity in creating a safe space to generate and explore ideas, setting and constantly 
emphasizing appropriate socio-mathematical norms and values, and providing 
affective support for persistence. We operationalized these design features from 
Kapur and Bielaczyc (2012) into two concrete criteria: group work as the partici-
pation structure and social surround facilitation in the problem-solving phase.

Mechanisms b, c, and d are likely to be triggered by providing opportunities to 
compare and contrast the affordances and constraints of failed or suboptimal 
RSMs and the assembly of canonical RSMs, which is achieved by having students 
explain their ideas and paraphrasing student explanations, comparing and con-
trasting these ideas to distill critical features, directing student attention to notice 
these critical features, and assembling the critical features into the canonical form. 
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By focusing on the interrogation of students’ ideas toward improvement and 
enhancing their participation during instruction by questioning, asking them to 
elaborate on each other’s ideas, and so on, students can be provided opportunities 
to consolidate their knowledge gaps. We operationalized these design features 
from Kapur and Bielaczyc (2012) into two concrete criteria: instruction building 
on student solutions and dialogue-dominant social surround facilitation in the 
instruction phase.

By codifying PF design fidelity, we were able to systematically assess its 
impact on learning outcomes. The conjecture mapping between PF design fidelity 
criteria and the above-discussed learning mechanisms is summarized in Figure 4. 
It may not seem entirely surprising that PF works when its design fidelity is high 
(or, vice versa) when compared to I-PS. However, in the included comparisons, 
we often found instances of PS-I possessing low PF fidelity being compared with 
I-PS, and the resulting negative/null results being used to make claims about the 
nonefficacy of PF. Merely having the exact same sequence (problem solving fol-
lowed by instruction) does not make PF and PS-I the same design. The extent to 
which results for PS-I can be used to make claims about PF depends on the extent 
to which PF fidelity criteria is followed in the PS-I learning design. Of course, PF 
design fidelity criteria is not the only critical factor that influences when PS-I 
performs better or worse than I-PS. As we have shown, there are several other 
important factors that might meaningfully categorize the data into less heteroge-
neous subgroups. But the question of fidelity is intrinsically fundamental. Similar 
to a manipulation check prior to reporting results of an intervention, it offered a 
useful starting point to investigate PF efficacy.

Finally, we found evidence for instruction building on student solutions, group 
work as the participation structure in the problem-solving phase, evidence for 
multiple RSM generation in the article, and dialogue-dominant social surround 

FIGuRE 4. Conjecture map between PF fidelity features and purported learning 
mechanisms.
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facilitation in the instruction phase as being the top four most important PF fidel-
ity predictors of effect sizes. These results from regression analysis offer a useful 
lens through which a designer may systematically go about choosing which PF 
fidelity criteria to implement during an inductive learning activity. Rather than 
forcing the implementation of all seven PF design fidelity criteria, it is important 
to consider what is feasible within the cultural context and the available time and 
resources.

When comparing PS-I with I-PS, it is also useful to critically reflect on whether 
the first stage of PF (i.e., the problem-solving phase focusing on prior knowledge 
activation and RSM generation) might in fact constitute a form of direct instruc-
tion. We argue that since the emphasis of this first stage is on generating and 
interpreting solutions, that is, students (typically novices) exploring solutions to 
complex problems based on concepts they have not formally studied, the initial 
problem-solving stage could be considered a form of discovery-based instruction, 
albeit one that serves to prepare students to learn from future (direct) instruction. 
Because no new canonical information is provided explicitly via cognitive scaf-
folds, worked examples, and so on, our view is that the first stage of PF does not 
resemble (direct) instruction, a learning experience where students are introduced 
to formal concepts of a domain in the most unambiguous (eloquent) way possible 
(Kirschner et al., 2006).

Students’ Incoming Characteristics

We found that effects favoring PS-I over I-PS were higher if students belonged 
to a higher grade level. Younger age students (2nd to 5th graders), however, 
seemed to benefit from I-PS interventions, although the average effect size favor-
ing I-PS was low (Hedge’s g of −0.09 [95% CI −0.92, −0.16]. This is despite 72% 
(n = 18/25) of the comparisons involving 2nd to 5th graders providing evidence 
for high prior knowledge activation (reflected in the PF fidelity criteria of evi-
dence for multiple RSM generation). However, the extent to which the activated 
prior knowledge is relevant for learning the targeted concepts can substan-
tially affect students’ performance. Research on goal specificity (e.g., Miller 
et al., 1999; Vollmeyer et al., 1996), mechanisms of errorful generation (Cyr & 
Anderson, 2015), as well as prior PS-I work (e.g., Kapur, 2015; Schwartz et al., 
2011) has suggested that the benefits of prior knowledge activation such as notic-
ing inconsistencies across multiple problem instances, encoding critical features 
from instruction, and so on, are contingent on the relevance of the activation. One 
explanation for the negative effect sizes disfavoring PS-I for young learners might 
therefore be the low relevance (albeit, high activation) of prior knowledge. Factors 
stemming from students’ unawareness of productive metacognitive learning strat-
egies (e.g., planning and monitoring solution generation efficacy, self-explaining, 
debugging, and error-evaluation) might alternatively contribute to this contrasting 
trend. Finally, across the comparisons involving 2nd to 5th graders, the low over-
all PF fidelity score (M = 56.86%, SD = 27.84%) might also be responsible for 
negative effects for PS-I. For these younger students then, scaffolding the initial 
problem-solving phase of PS-I to compensate for their insufficient prior knowl-
edge about cognitive and metacognitive learning strategies might be critical. 
Richland and Simms (2015), more generally, have documented the importance of 
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scaffolding exploratory problem solving through a series of studies on induction 
within (non-) STEM domains. They emphasize explicit support in noticing the 
relevance of relational thinking, providing adequate processing resources to men-
tally hold and manipulate relations, and facilitating recognition of both similari-
ties and differences when drawing analogies.

We further found that comparisons where students were pretested on concepts 
targeted in the intervention showed a higher effect size favoring PS-I (Hedge’s g 
0.39 [95% CI −0.26, 0.42]), relative to interventions where no pretest was held 
(Hedge’s g 0.31 [95% CI −0.44, 0.30]), or the pretest targeted only prerequisite 
concepts (Hedge’s g 0.30 [95% CI −0.63, 0.50]). Therefore, including a pretest 
targeting similar learning materials as the PS-I intervention itself may serve to 
enhance the differential advantages over I-PS (see Yang et al., 2018, for the facili-
tatory effects of forward testing), instead of diminishing PS-I’s effectiveness due 
to potential overlap with the triggered learning mechanisms (Newman & DeCaro, 
2019).

Intervention Characteristics

We found studies carried out in Asia and Australia to have higher effects in 
favor of PS-I, relative to those carried out in Europe and North America. Also, 
longer quasi-experimental interventions had higher effect sizes in favor of PS-I 
over I-PS, compared to experimental comparisons that often spanned a shorter 
duration. Our analysis showed that this could in-part be because quasi-experimen-
tal interventions had higher overall PF fidelity (especially for 6th to 10th graders 
and undergraduates comprising the majority).

Furthermore, results suggested that except for domain general-skills, most 
STEM and non-STEM learning domains had moderate effect sizes in favor of 
PS-I. Why might this be the case? When learning domain-general skills, Chase 
and Klahr (2017) suggest that the problem-solving phase in and of itself is less 
likely to provide implicit feedback about what goals to adopt during the inquiry 
process (that strongly impacts learning). For instance, students’ goals in pursuing 
inquiry might be scientific (finding out whether a variable impacts an outcome) or 
engineering oriented (guaranteeing some desired outcome). In such situations, 
aligning their goals to a scientific one takes precedence over the relative ordering 
of the instruction phase in which this might happen. In the absence of explicit 
feedback regarding what problem-solving actions are actually failures, PS-I can 
therefore be expected to perform worse. Students might not be in a position to use 
their awareness of knowledge gaps to consolidate information during the instruc-
tion phase (Matlen & Klahr, 2013). More empirical work is however needed to 
generalize these claims. Note that an I-PS advantage for domain-general skills 
does not mean that no alternative instructional models exist for teaching such 
skills. For instance, educational games comprising storylines with teachable 
moments tightly integrated into the gameplay experience are not naturally 
described as either I-PS (or PS-I) sequence.

Implications

Results from our meta-analytic review hold important implications for teach-
ing and learning. Our results suggest that preparatory problem-solving approaches 
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with high design fidelity to PF might be a powerful way to design for long-term 
learning, especially for students’ conceptual knowledge and the ability to transfer 
their knowledge to other domains. Based on these results, we recommend that 
classroom cultures prioritize enculturating students into a sensemaking disposi-
tion via preparatory problem-solving approaches. Even when such approaches 
lead students to generate failed or suboptimal solutions, students’ relevant prior 
knowledge activation provides opportunities for teachers to show them limita-
tions of this prior knowledge. By discussion of tradeoffs of different approaches 
to a problem, teacher’s emphasis on negative knowledge (Gartmeier et al., 2008) 
can facilitate reflection and increase students’ certainty and efficiency of future 
actions. Initial failures then might indeed serve as stepping stones for success.

Limitations and Future Work

Meta-analysis has been shown to be an effective technique in evaluating broad-
scale pedagogical changes (Freeman et al., 2014). To the best of our knowledge, 
the current meta-analysis provides the most comprehensive integrative review 
of the relative efficacy of preparatory problem solving and instruction-first 
approaches to date. However, it would be a mistake to interpret the comprehen-
sive nature of this work as providing authoritative conclusions about the pattern 
of effects. The identified list of influencing factors is important but not exhaus-
tive. Some limitations and future work avenues are worth discussing.

First, nearly 75% of all included comparisons (see Table 1) targeted learning 
concepts of math and physics, which were, in turn, skewed with particular subtop-
ics (e.g., variance). With future PS-I work targeting less frequent topics such as 
statistics process control, fair division/distribution, crypt-arithmetic, and so on, a 
topic-wise (instead of domain-wise) subgroup analysis might become plausible. 
The complexity of such learning materials (often proxied using ill-defined con-
structs such as element interactivity) might be a critical boundary condition, espe-
cially since a recent PS-I work (Ashman et al., 2020) suggests that advantages of 
PS-I over I-PS may diminish with increasing complexity. Clearly, more studies 
are also needed in other STEM domains as well as in non-STEM domains (e.g., 
psychology, arts, history) before we can generalize the effectiveness of PS-I, even 
with high PF fidelity. More studies with postgraduates and professionals need to 
be conducted before we can begin talking about whether PS-I treatments might 
positively impact such populations.

Second, included comparisons also revealed a ~3× higher number (diver-
sity) of research groups carrying out empirical PS-I work across Europe and 
North America (relative to Asia and Australia). Although meta-analytic pooling 
accounts for the precision of the effect size estimates for different studies (and 
we expect the overall pooled estimate to be robust), the low effect sizes for 
geographical regions of Europe and North America (see Table 4) might alterna-
tively stem from a multiplicity of theoretical lenses that these researchers bring 
to bear—lenses which shape the learning design and come with different philo-
sophical flavors and different legacy of associated educational practices. The 
lower effectiveness of PS-I in Europe and North America might also point 
toward the importance of teacher training and/or their domain knowledge nec-
essary to guide students’ learning with the PS-I design. Although discourse style 
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and building on student-generated solutions are two teacher characteristics we 
could reliably code, credentials such as the teacher’s intellectual ability, knowl-
edge of subject-area, and classroom management skills, if reported in future 
studies, are very important to consider (Looney, 2011) when evaluating PS-I’s 
effectiveness.

Third, for the 59.64% of included comparisons that provided evidence for mul-
tiple RSM generation during the problem-solving phase, very few reported actual 
failure (and success) rates. Although we expect students who have not formally 
learned a targeted concept to mostly generate wrong (or, suboptimal) solutions 
when presented with an ill-structured problem, multiple RSM generation is a 
rather weak proxy for failure. Consistent reporting of failure rates for the prob-
lem-solving phase in future work will afford directly testing students’ experienced 
failure as a potential moderator of the observed effects.

Fourth, individual differences might also differentially benefit students’ 
learning via preparation-first or instruction-first approaches. However, we 
did not have any information about them in the current meta-analysis. As 
more work in the field begins to consistently factor in heterogeneity in stu-
dents’ approach to failure-driven and success-driven learning (see, for 
instance, Sinha et al. [2021] and Sinha & Kapur [2021] that investigate post-
test differences, accounting for students’ prior knowledge, effort regulation, 
self-esteem, goal orientation, and attitude toward mistakes simultaneously), 
we would be in a better position to study alternative explanations for the 
preparatory benefits of problem solving and other sensemaking approaches. 
During consideration of when and for whom PS-I or I-PS designs work, edu-
cators should also be mindful of ways to support the learning of those stu-
dents who may be disadvantaged in pre-knowledge or cognitive capacity. The 
current meta-analysis suggests a dearth of studies involving students with 
learning disabilities and/or learning difficulties. As yet, it is therefore still 
unknown whether PS-I can be used to improve learning for such student 
populations, especially when they are integrated within regular education 
classrooms. Future research could usefully investigate this. Finally, recent 
work (Haimovitz & Dweck, 2016) also suggests that students’ individual dif-
ferences in learning from failure and success might be strongly influenced 
(predicted) by failure-mindsets possessed by parents (view of failure as 
debilitating or enhancing). Future work might consider evaluating contribu-
tions from the home.

Fifth, we focused only on the learning outcomes of conceptual knowledge and 
transfer. However, if a key goal of preparatory problem solving is to make stu-
dents aware of what they do not know, negative knowledge (what is not part of a 
concept, what procedure does not work, and why) should be an important out-
come to measure after students have received instruction. Surprisingly, only one 
study in the meta-analysis (Loibl & Leuders, 2018) explicitly emphasized the 
assessment of negative knowledge and found differential benefits compared to 
conceptual knowledge outcomes. More studies would need to have separate 
assessments of negative knowledge (rather than including such questions as part 
of a conceptual knowledge or transfer posttest), before we can discern the robust-
ness of results.
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Sixth, it might be argued that different learning designs are not directly experi-
mentally comparable because of differences in learning objectives. For instance, 
even though the only difference between PS-I and I-PS in a strict experimental 
comparison might be thought of as reversed ordering of the problem-solving and 
instruction phases, often, the goals of preparatory problem solving (e.g., prior 
knowledge activation, knowledge gap awareness, deep feature identification) are 
quite different from problem solving that follows instruction (e.g., fluency via 
application of taught procedures; Kalyuga & Singh, 2016).

A final limitation of our work lies in the empirical decision to dichotomize PF 
fidelity criteria and other student and intervention characteristics. For instance, 
the coding scheme for criteria such as affective draw and social surround facilita-
tion comprises different aspects, and a finer-grained division into subcategories is 
plausible. However, in the process of iteratively developing these coding schemes, 
we realized that there was an insufficient number of comparisons where such 
subcategories could be coded with high enough interrater reliability. Having two 
subcategories simplifies interpretation, and aligns with the goals of establishing 
relationships between high-level PF fidelity criteria and effect sizes. Taken 
together, a consideration of these limitations warrants more transparent collec-
tion, assessment, and reporting of factors beyond those studied in this review. For 
future studies, this may even imply experimentally manipulating such factors to 
assess their causal impact.

Conclusion

Our meta-analysis brings robust and generalizable empirical evidence to bear 
on the long-standing debate about the pedagogical effectiveness of starting to 
teach a new concept with problem solving or instruction (Tobias & Duffy, 2009). 
By including an impressive number of comparisons from the burgeoning PF (and 
more generally PS-I) literature, we clearly established the efficacy of PS-I over 
I-PS when PF design fidelity was high, for the learning outcomes of conceptual 
knowledge and transfer. To the best of our knowledge, this is the first integrative 
empirical counterevidence against the claim that problem solving as a sensemak-
ing activity for novices is not an effective instructional approach (cf. Kirschner 
et al., 2006, and follow-up work). By dividing the included comparisons into sev-
eral meaningful subgroups based on students’ grade level, intervention time span, 
and its (quasi-)experimental nature, we systematically highlighted why, when, for 
whom, and by how much might a PS-I design be superior to instruction-first 
approaches. After accounting for the significant evidence regarding publication 
bias, effects in favor of PS-I were even stronger. Our results advance the field by 
providing solid empirical evidence, in the context of existing literature, for using 
preparatory problem-solving approaches with high design fidelity to Productive 
Failure (Kapur & Bielaczyc, 2012), as a powerful way to design for long-term 
learning.
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Notes

We thank Maya Spannagel (university of Zürich) for assistance with coding subgroup 
categories. We would also like to thank colleagues from the Professorship for Learning 
Sciences and Higher Education (ETH Zürich) for helpful feedback on previous iterations 
of the article.

 1 Google Scholar was chosen because it is currently the most comprehensive academic 
search engine with 389 million records (Gusenbauer, 2019). In addition, it allows access to 
both published and unpublished literature (e.g., dissertations).

 2 Since PF (Kapur, 2008) pre-dates PS-I (Loibl et al., 2017), we adopted more-inclu-
sive search criteria of starting with citations to key PF articles. The three follow-up PF 
articles were published in flagship journals of the Cognitive Science Society (CSS), 
European Association for Research on Learning and Instruction (EARLI), and American 
Psychological Association (APA). The expected diversity in readership across these publi-
cation avenues led us to include citations from these articles in the search criteria, in addi-
tion to citations from the two seminal PF articles.

 3 For comparisons where information critical for pooling effect sizes was not present 
in the articles (M, SD, sample size), personal communication was established with relevant 
researchers between July 2019 and August 2019. We sincerely thank all researchers who 
promptly got back.

 4 Suppose one wants to teach students a math concept (and its associated procedures) 
that is novel to them, say standard deviation (SD). Procedural knowledge assessments 
would test application of the procedure for computing SD on a new dataset. Conceptual 
knowledge assessments would test the understanding of the critical features of SD and 
deducing its mathematical properties. Transfer assessments would test whether students 
can adapt knowledge of SD to solve problems on the concept of, say normalization, that is 
not explicitly covered in the instruction. Since nearly 90% of PS-I versus I-PS experimen-
tal comparisons assessed only conceptual knowledge or transfer outcomes (and not both), 
we did not use a multivariate model.

 5 Not all articles where the problem design afforded multiple RSMs necessarily com-
prised evidence of students actually generating multiple RSMs. Despite the lack of 
independence ( χ2 1 166 19 113( , ) . ,=  p < 0.001), dependency metrics suggested a rather 
low level of association between these nominal variables (contingency coefficient = 
0.321, ∅ -coefficient = 0.339, Cramer’s V = 0.339). Theoretically, since the quantity 
and quality of RSMs generated has been considered a proxy for the mechanism of prior 
knowledge activation in former PF literature (Kapur, 2014; Loibl & Rummel, 2014b), this 
is an important distinction. However, we acknowledge that if the diversity of the solution 
approaches was not part of the research question, authors of those included papers may not 
have provided information on the presence of multiple RSMs in their article (although stu-
dents generated multiple solutions). Although our coding criteria accounts also for qualita-
tive (and not just quantitative) descriptions of multiple RSM generation, running the risk 
of missing articles where students indeed generated multiple RSMs poses a threat to the 
coding validity.

 6 A total of 57.2% (n = 95) comparisons did not report any information on this variable; 
33.8% of the remaining comparisons were annotated as high.

 7 A total of 1.8% (n = 3) comparisons did not report any information on this variable. 
As an illustrative example, the pretest for a PS-I intervention targeting the learning concept 
of standard deviation would be coded as prerequisite if the questions comprise only basic 
descriptive statistics (e.g., mean, median), and targeted if the questions additionally also 
comprise standard deviation.

 8 Since social surround facilitation during the problem-solving phase had 57.2% miss-
ing (unreported) data, we imputed these values based on the observed data distribution for 
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this criterion (by randomly drawing n = 5 subsets of the coded subcategories), prior to the 
multiple-regression analysis. Simply discarding missing data (and corresponding compari-
sons) may result in the complete cases being no longer representative of the target popula-
tion, and consequently, estimates derived from them being subject to nonreporting bias. 
The predictor ranking and regression coefficients we report in Table 6 are therefore based 
on averaging the results from these five multiple-regression models that take as input a 
particular imputed version of social surround facilitation during the problem-solving phase 
(each time), along with rest of the PF fidelity criteria.

 9 Intuitively, the merit of a feature subset S containing k features is 

k r k k k rcf ff∗  + −( )/ 1 , where rcf  is the mean feature-class correlation, and rff  is the 
average feature-feature intercorrelation. The numerator provides an indication of how pre-
dictive of the class a set of features are; the denominator of how much redundancy there is 
among the features (Hall, 1999).

10 AICc estimates the relative Kullback–Leibler distance between a fitted candidate 
regression model and the data-generating mechanism. The relative weight of evidence (or 
Akaike weights) of a model i can be interpreted as the probability of model i being the 
best-approximating model from the entire set of candidate models. We use the sum of 
Akaike weights for each explanatory (independent) variable in the subset of regression 
models it appeared as a measure of its importance (Buckland et al., 1997). Values > 0.8 
are considered high.

11 With evidence for publication bias, the true effect size can be estimated. For an 
observed set of significant results, one can identify the expected p-curve that most closely 
resembles the observed p-curve, and then identify the effect size estimate corresponding to 
that p-curve. Because the shape of the p-curve is a function exclusively of sample size and 
effect size (and the sample size is observed), we can simply find the effect size that obtains 
the best overall fit (Harrer et al., 2019).

12 Results from a complementary Bayesian multilevel meta-analysis model (Harrer 
et al., 2019; Williams et al., 2018) with weakly informative priors for true pooled effect size 
(µ ~N(0, 1)) and between-study heterogeneity (τ ~ HC(0, 0.5)) aligned with these pooled 
effect size estimates: Hedge’s g = 0.36, 95% CI [0.19, 0.52]. Based on recommendations 
in Harrer et al. (2019), the overall Bayesian methodology involved 4,000 iterations of 
the Markov Chain Monte Carlo–based NuTS sampling procedure (Hoffman & Gelman, 
2014). Based on the empirical cumulative distribution function of the posterior distribution 
for the pooled effect size, the probability of the SMD being <0.2: 3.05%; <0.3: 25.11%; 
<0.4: 70.41%; <0.5: 95.72%.

13 Previous reviews regarding the forward testing effect (Yang et al., 2018) suggest 
inconclusive evidence for the extent to which it might generalize to younger children (and 
older adults). Therefore, within the PS-I experimental paradigm, evaluating the interaction 
effects of age (grade-level) of students and whether a pretest was carried out might contrib-
ute toward understanding whether the forward testing effect is differentially pronounced 
across grade levels.
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